Maximal trees on $\mathcal{P}(\omega) /$ fin.

Maximal trees on $\mathcal{P}(\omega) /$ fin

JONATHAN CANCINO-MANRÍQUEZ UNAM-UMSNH, Morelia
 México.
 jcancino@matmor.unam.mx

Winter School in Abstract Analysis, section Set Theory Febrero 2, 2016

This is joint work with Michael Hrušák, Gabriela Campero and Favio Miranda

Maximal trees

Jonathan
Cancino

Conventions.

- As usual, instead of working with $\mathcal{P}(\omega) /$ fin, we will be working with $[\omega]^{\omega}$.
- Our trees grow downward.
- Making abuse of notation, we will make reference to trees on $[\omega]^{\omega}$ as trees on $\mathcal{P}(\omega) / f i n$, and viceverse.
- We consider $[\omega]^{\omega}$ odered by the almost contention \subseteq given $A, B \in[\omega]^{\omega}$, we say that $A \subseteq^{*} B$ if and only if $A \backslash B$ is finite.

Conventions.

- As usual, instead of working with $\mathcal{P}(\omega) /$ fin, we will be working with $[\omega]^{\omega}$.
- Our trees grow downward.
- Making abuse of notation, we will make reference to trees on $[\omega]^{\omega}$ as trees on $\mathcal{P}(\omega) / f i n$, and viceverse.
- We consider $[\omega]^{\omega}$ odered by the almost contention \subseteq given $A, B \in[\omega]^{\omega}$, we say that $A \subseteq \subseteq^{*} B$ if and only if $A \backslash B$ is finite.

Conventions.

- As usual, instead of working with $\mathcal{P}(\omega) /$ fin, we will be working with $[\omega]^{\omega}$.
- Our trees grow downward.

■ Making abuse of notation, we will make reference to trees on $[\omega]^{\omega}$ as trees on $\mathcal{P}(\omega) / f i n$, and viceverse.

- We consider $[\omega]^{\omega}$ odered by the almost contention \subseteq^{*} given $A, B \in[\omega]^{\omega}$, we say that $A \subseteq^{*} B$ if and only if $A \backslash B$ is finite.

Conventions.

- As usual, instead of working with $\mathcal{P}(\omega) /$ fin, we will be working with $[\omega]^{\omega}$.
- Our trees grow downward.

■ Making abuse of notation, we will make reference to trees on $[\omega]^{\omega}$ as trees on $\mathcal{P}(\omega) / f i n$, and viceverse.

- We consider $[\omega]^{\omega}$ odered by the almost contention \subseteq^{*} : given $A, B \in[\omega]^{\omega}$, we say that $A \subseteq^{*} B$ if and only if $A \backslash B$ is finite.

Trees on $\mathcal{P}(\omega) /$ fin

Definition

A tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin is a family of elements of $\mathcal{P}(\omega) /$ fin, such that for all $A \in \mathcal{T}$, the set $\operatorname{pred}_{\mathcal{T}}(A)$ is well oredered by \supseteq^{*}, the reverse ordering of \subseteq^{*}.
$\operatorname{pred}_{\mathcal{T}}=\left\{B \in \mathcal{T}: A \subseteq^{*} B\right\}$ is the set of predecesors of A in the tree \mathcal{T}

Definition

Given two trees T, S on $\mathcal{P}(\omega) /$ fin, let us say that $T \sqsubseteq S$ if and only if S is an end extension of T, that is, for every $x \in T$, the sets $\operatorname{pred}_{T}(x)=\operatorname{pred}_{S}(x)$

Trees on $\mathcal{P}(\omega) /$ fin

Definition

A tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin is a family of elements of $\mathcal{P}(\omega) /$ fin, such that for all $A \in \mathcal{T}$, the set $\operatorname{pred}_{\mathcal{T}}(A)$ is well oredered by \supseteq^{*}, the reverse ordering of \subseteq^{*}.
$\operatorname{pred}_{\mathcal{T}}=\left\{B \in \mathcal{T}: A \subseteq^{*} B\right\}$ is the set of predecesors of A in the tree \mathcal{T}.

Definition

Given two trees T, S on $\mathcal{P}(\omega) /$ fin, let us say that $T \sqsubseteq S$ if and only if S is an end extension of T, that is, for every $x \in T$, the sets $\operatorname{pred}_{T}(x)=\operatorname{pred}_{S}(x)$

Trees on $\mathcal{P}(\omega) /$ fin

Definition

A tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin is a family of elements of $\mathcal{P}(\omega) /$ fin, such that for all $A \in \mathcal{T}$, the set $\operatorname{pred}_{\mathcal{T}}(A)$ is well oredered by \supseteq^{*}, the reverse ordering of \subseteq^{*}.
$\operatorname{pred}_{\mathcal{T}}=\left\{B \in \mathcal{T}: A \subseteq^{*} B\right\}$ is the set of predecesors of A in the tree \mathcal{T}.

Definition

Given two trees T, S on $\mathcal{P}(\omega) / f i n$, let us say that $T \sqsubseteq S$ if and only if S is an end extension of T, that is, for every $x \in T$, the sets $\operatorname{pred}_{T}(x)=\operatorname{pred}_{S}(x)$.

Jonathan
Cancino

Then the set of all trees on $\mathcal{P}(\omega) /$ fin, ordered by \sqsubseteq, satisfies the conditions of Zorn's Lemma, so this ordering has maximal elements.

Definition(D. Monk)

Define the cardinal invariant tr as the minimum posible size of a maximal tree on $\mathcal{P}(\omega) /$ fin, that is,

$$
\mathfrak{t r}=\min \{|\mathcal{T}|: \mathcal{T} \subseteq \mathcal{P}(\omega) / \text { fin is a maximal tree }\}
$$

Monk's notation differs from ours. Given a boolean algebra \mathbb{B} he writes $\operatorname{Inc} c_{m m}^{\text {tree }}(\mathbb{B})$ to denote the minimum cardinality of a tree on the boolean algebra \mathbb{B}

Then the set of all trees on $\mathcal{P}(\omega) /$ fin, ordered by \sqsubseteq, satisfies the conditions of Zorn's Lemma, so this ordering has maximal elements.

Definition(D. Monk)

Define the cardinal invariant $\mathfrak{t r}$ as the minimum posible size of a maximal tree on $\mathcal{P}(\omega) /$ fin, that is,

$$
\mathfrak{t r}=\min \{|\mathcal{T}|: \mathcal{T} \subseteq \mathcal{P}(\omega) / \text { fin is a maximal tree }\}
$$

Monk's notation differs from ours. Given a boolean algebra \mathbb{B} he writes $\operatorname{Inc} c_{m m}^{\text {tree }}(\mathbb{B})$ to denote the minimum cardinality of a tree on the boolean algebra \mathbb{B}

Then the set of all trees on $\mathcal{P}(\omega) /$ fin, ordered by \sqsubseteq, satisfies the conditions of Zorn's Lemma, so this ordering has maximal elements.

Definition(D. Monk)

Define the cardinal invariant $\mathfrak{t r}$ as the minimum posible size of a maximal tree on $\mathcal{P}(\omega) /$ fin, that is,

$$
\mathfrak{t r}=\min \{|\mathcal{T}|: \mathcal{T} \subseteq \mathcal{P}(\omega) / \text { fin is a maximal tree }\}
$$

Monk's notation differs from ours. Given a boolean algebra \mathbb{B} he writes $\operatorname{Inc} c_{m m}^{\text {tree }}(\mathbb{B})$ to denote the minimum cardinality of a tree on the boolean algebra \mathbb{B}.

How does a maximal tree on $\mathcal{P}(\omega) /$ fin look like?

How does a maximal tree on $\mathcal{P}(\omega) /$ fin look like?

Lemma

A tree $\mathcal{T} \subseteq[\omega]^{\omega}$ is a maximal tree if and only if for every set $A \in[\omega]^{\omega}$, one of the following holds:

How does a maximal tree on $\mathcal{P}(\omega) /$ fin look like?

Lemma

A tree $\mathcal{T} \subseteq[\omega]^{\omega}$ is a maximal tree if and only if for every set $A \in[\omega]^{\omega}$, one of the following holds:

- There is $B \in \mathcal{T}$ such that $B \subseteq^{*} A$.
- There are $B, C \in \mathcal{T}$ incomparable such that $A \subseteq B \cap C$.

How does a maximal tree on $\mathcal{P}(\omega) /$ fin look like?

Lemma

A tree $\mathcal{T} \subseteq[\omega]^{\omega}$ is a maximal tree if and only if for every set $A \in[\omega]^{\omega}$, one of the following holds:

- There is $B \in \mathcal{T}$ such that $B \subseteq \subseteq^{*} A$.
- There are $B, C \in \mathcal{T}$ incomparable such that $A \subseteq^{*} B \cap C$.

Remark.

If \mathcal{T} is a maximal tree on $\mathcal{P}(\omega) /$ fin, then the following family is a reaping family

$$
\mathcal{T} \cup\{\omega \backslash A: A \in \mathcal{T}\}
$$

So in particular the reaping number is a lower bound for $\mathfrak{t r}$.

Question, D. Monk

Is $t v=c$?

Remark.

If \mathcal{T} is a maximal tree on $\mathcal{P}(\omega) /$ fin, then the following family is a reaping family

$$
\mathcal{T} \cup\{\omega \backslash A: A \in \mathcal{T}\}
$$

So in particular the reaping number is a lower bound for $\mathfrak{t r}$.

Question, D. Monk

Is $\mathfrak{t r}=\mathfrak{c}$?

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are comnatible with the negation of CH.
- They hold in many of the well known models of set theory.

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \mathfrak{d}$, the sequential composition of \mathfrak{r}_{σ} followd by d

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are compatible with the negation of CH - They hold in many of the well known models of set theory.

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \mathfrak{d}$, the sequential composition of \mathfrak{r}_{σ} followd by 0

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are compatible with the negation of CH .
- They hold in many of the well known models of set theory

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \mathfrak{d}$, the sequential composition of \mathfrak{r}_{σ} followd by o

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are compatible with the negation of CH .
- They hold in many of the well known models of set theory.

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \boldsymbol{d}$, the sequential composition of r_{σ} followd by 0

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are compatible with the negation of CH .
- They hold in many of the well known models of set theory.

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \boldsymbol{d}$, the sequential composition of r_{σ} followd by 0

Parametrized Diamond Principles

- This are guessing principles which are weakenings of the well known Jensen's diamond principle.
- For each Borel cardinal invariant corresponds a parametrized diamond principle.
- They are compatible with the negation of CH .
- They hold in many of the well known models of set theory.

The \diamond-like principle we are using is the corresponding to the cardinal invariant $\mathfrak{r}_{\sigma} ; \mathfrak{d}$, the sequential composition of \mathfrak{r}_{σ} followd by \mathfrak{d}.

Maximal trees

Jonathan
Cancino

We have found two different shapes for these kind of trees:

Theorem

$S_{\text {L(m) }}\left(\mathfrak{r}_{\sigma} \cdot \mathfrak{\lambda}\right)$ implies that there is a maximal tree on $\mathcal{P}(\omega) /$ fin of cardinality ω_{1}, has height ω_{1}, and all nodes, except the root of the tree(who has ω_{1} succesors), have exactly one succesor.

Theorem

$\nabla_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin, such that every node $A \in \mathcal{T}$ has ω_{1} succesors, and the height of \mathcal{T} is ω

Corolary

In the Sacks model $t r$ is ω_{1}, while the continuum is ω_{2}

We have found two different shapes for these kind of trees:

Theorem

$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree on $\mathcal{P}(\omega) /$ fin of cardinality ω_{1}, has height ω_{1}, and all nodes, except the root of the tree(who has ω_{1} succesors), have exactly one succesor.

Theorem
$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree \mathcal{T} on
$\mathcal{P}(\omega) /$ fin, such that every node $A \in \mathcal{T}$ has ω_{1} succesors, and the height of \mathcal{T} is ω.

Corolary

In the Sacks model $\mathfrak{t r}$ is ω_{1}, while the continuum is ω_{2}.

We have found two different shapes for these kind of trees:

Theorem

$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree on $\mathcal{P}(\omega) /$ fin of cardinality ω_{1}, has height ω_{1}, and all nodes, except the root of the tree(who has ω_{1} succesors), have exactly one succesor.

Theorem

$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin, such that every node $A \in \mathcal{T}$ has ω_{1} succesors, and the height of \mathcal{T} is ω.

In the Sacks model $\mathfrak{t r}$ is ω_{1}, while the continuum is ω_{2}.

We have found two different shapes for these kind of trees:

Theorem

$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree on $\mathcal{P}(\omega) /$ fin of cardinality ω_{1}, has height ω_{1}, and all nodes, except the root of the tree(who has ω_{1} succesors), have exactly one succesor.

Theorem

$\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma} ; \mathfrak{d}\right)$ implies that there is a maximal tree \mathcal{T} on $\mathcal{P}(\omega) /$ fin, such that every node $A \in \mathcal{T}$ has ω_{1} succesors, and the height of \mathcal{T} is ω.

Corollary

In the Sacks model $\mathfrak{t r}$ is ω_{1}, while the continuum is ω_{2}.

In the construction of the trees in the two theorems, we make use of the dominating number, and it is not clear how to skip this, so one may ask wheather the dominating number \mathfrak{d} is a lower bound of $\mathfrak{t r}$.

Question
Is \mathfrak{d} a lower bound for tr ?
We only have partial evidence about this.

In the construction of the trees in the two theorems, we make use of the dominating number, and it is not clear how to skip this, so one may ask wheather the dominating number \mathfrak{d} is a lower bound of $\mathfrak{t r}$.

Question

Is \mathfrak{d} a lower bound for $\mathfrak{t r}$?
We only have partial evidence about this.

In the construction of the trees in the two theorems, we make use of the dominating number, and it is not clear how to skip this, so one may ask wheather the dominating number \mathfrak{d} is a lower bound of $\mathfrak{t r}$.

Question

Is \mathfrak{d} a lower bound for $\mathfrak{t r}$?
We only have partial evidence about this.

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree

Proposition

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Let \mathcal{T} be a maximal tree on $\mathcal{P}(\omega) / f i n$. Then

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Let \mathcal{T} be a maximal tree on $\mathcal{P}(\omega) /$ fin. Then

- If \mathcal{T} is an ideal-tree, then it has size at least \mathfrak{d}.
- If \mathcal{T} has a branch of countable cofinality, then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has an infinite $A D$ family then $\mathfrak{d} \leq|\mathcal{T}|$
- If \mathcal{T} has a terminal node (a node with no succesors), then

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Let \mathcal{T} be a maximal tree on $\mathcal{P}(\omega) /$ fin. Then

- If \mathcal{T} is an ideal-tree, then it has size at least \mathfrak{d}.
- If \mathcal{T} has a branch of countable cofinality, then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has an infinite $A D$ family then $\mathfrak{O} \leq|\mathcal{T}|$
- If \mathcal{T} has a terminal node (a node with no succesors), then

Definition

Jonathan
Cancino
Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Let \mathcal{T} be a maximal tree on $\mathcal{P}(\omega) /$ fin. Then

- If \mathcal{T} is an ideal-tree, then it has size at least \mathfrak{d}.
- If \mathcal{T} has a branch of countable cofinality, then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has an infinite $A D$ family then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has a terminal node (a node with no succesors), then $|\mathcal{T}|=c$.

Definition

Let \mathcal{T} be a tree on $\mathcal{P}(\omega) /$ fin. We say that the tree \mathcal{T} is an ideal-tree if for every $A \in \mathcal{T}$, the family of sets $\left\{A \cap B: B \notin \operatorname{pred}_{\mathcal{T}}(A)\right\}$ generates a proper ideal on A.

The tree of height ω mentioned above is actually an ideal-tree.

Proposition

Let \mathcal{T} be a maximal tree on $\mathcal{P}(\omega) /$ fin. Then

- If \mathcal{T} is an ideal-tree, then it has size at least \mathfrak{d}.
- If \mathcal{T} has a branch of countable cofinality, then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has an infinite $A D$ family then $\mathfrak{d} \leq|\mathcal{T}|$.
- If \mathcal{T} has a terminal node (a node with no succesors), then $|\mathcal{T}|=\mathfrak{c}$.

Theorem
Jonathan
Cancino
It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:

So in the final extension the σ-reaping number and the dominating number are both ω_{1}, meanwhile non (\mathcal{M}) is big. Since this forcing is a definable forcing notion, it follows that $L_{(\mathbb{R})}\left(\mathfrak{r}_{\sigma}, \mathfrak{d}\right)$ holds.

Theorem

It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:
■ Make a ω_{2}-length CSI of any of your favourite fat tree forcing.

- This forcing is ω^{ω}-bounding and adds eventually different reals
= It was proved by J. Zapletal that this forcing preserves Ramsey ultrafilters.
So in the final extension the σ-reaping number and the
dominating number are both ω_{1}, meanwhile $\operatorname{non}(\mathcal{M})$ is big
Since this forcing is a definable forcing notion, it follows that $L_{(\mathbb{R})}\left(\mathfrak{r}_{\sigma}, \mathfrak{d}\right)$ holds.

Theorem

It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:
■ Make a ω_{2}-length CSI of any of your favourite fat tree forcing.

- This forcing is ω^{ω}-bounding and adds eventually different reals.
- It was proved by J. Zapletal that this forcing preserves Ramsey ultrafilters.
So in the final extension the σ-reaping number and the
dominating number are both ω_{1}, meanwhile non (\mathcal{M}) is big.
Since this forcing is a definable forcing notion, it follows that $\nabla_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma}, \mathfrak{d}\right)$ holds.

Theorem

It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:
■ Make a ω_{2}-length CSI of any of your favourite fat tree forcing.

- This forcing is ω^{ω}-bounding and adds eventually different reals.
- It was proved by J. Zapletal that this forcing preserves Ramsey ultrafilters.
So in the final extension the σ-reaping number and the
dominating number are both ω_{1}, meanwhile non (\mathcal{M}) is big
Since this forcing is a definable forcing notion, it follows that
$\forall_{L(\mathbb{R})}\left(\mathfrak{v}_{\sigma}, \mathfrak{o}\right)$ holds.

Theorem

It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:
■ Make a ω_{2}-length CSI of any of your favourite fat tree forcing.

- This forcing is ω^{ω}-bounding and adds eventually different reals.
- It was proved by J. Zapletal that this forcing preserves Ramsey ultrafilters.
So in the final extension the σ-reaping number and the
dominating number are both ω_{1}, meanwhile non (\mathcal{M}) is big
Since this forcing is a definable forcing notion, it follows that
$\forall_{L(\mathbb{R})}\left(\mathfrak{v}_{\sigma}, \mathfrak{o}\right)$ holds.

Theorem

Jonathan
Cancino
It is consistent that $\mathfrak{t r}<\operatorname{non}(\mathcal{M})$. In particular it is consistent $\mathfrak{t r}<\mathfrak{i}$.

Guideline of proof:

- Make a ω_{2}-length CSI of any of your favourite fat tree forcing.
- This forcing is ω^{ω}-bounding and adds eventually different reals.
- It was proved by J. Zapletal that this forcing preserves Ramsey ultrafilters.
So in the final extension the σ-reaping number and the dominating number are both ω_{1}, meanwhile non (\mathcal{M}) is big. Since this forcing is a definable forcing notion, it follows that $\diamond_{L(\mathbb{R})}\left(\mathfrak{r}_{\sigma}, \mathfrak{d}\right)$ holds.

Thank you for your attention!

